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AIR FOR USE IN SOLUTIONS OF THE
BOUNDARY-LAYER EQUATIONS

By Nathaniel B. Cohen
SUMMARY

Correlation formulas and tables of density, the product of density
and viscosity, Prandtl number, Lewis number, and a diffusion function as
functions of enthalpy and pressure are evolved from available property
data. These functions are appropriate for calculating real-gas equi-
librium boundary layers. The correlations cover a range in pressure

from 10~% atmospheres to 10 atmospheres and an enthalpy range from
128.7 Btu/1b (corresponding to a temperature of 540° F) to 16,930 Btu/lb
(corresponding to flight at approximately 29,000 feet per second).

INTRODUCTION

Consideration of air as a real gas in high-temperature flow phenom-
ena requires knowledge of the thermodynamic and transport properties
including the effects of dissociation and, at very high temperatures,
ionization. Thermodynamic property data are presented in references 1
to 5 and tables and curves of transport properties are presented in ref-
erences 1, 5, 6, and 7. In addition, reference 8 utilizes a simple binary
model of "air atoms" and "air molecules" to develop approximate formulas
for the properties, and reference 9 fits approximate analytic functions
to the data of reference 5, such that all properties are functions of
pressure and temperature.

With the exception of the Mollier chart of reference 3 and the charts

of reference 4, all the aforementioned references present properties as
functions of temperature with either pressure or density as a parameter.

For boundary-layer investigations of air in chemical equilibrium, however,

the enthalpy is the most convenient dependent variable for the energy
equation, and the most desirable set of fluid properties would be one
with enthalpy as the independent variable and pressure as the parameter.



Data in this form were used in references 10 and 11. During the course
of equilibrium boundary-layer studies at the Gas Dynamics Branch of the
Langley Research Center, certain correlation formulas and tables were

evolved for the pertinent thermodynamic and transport properties of air

in chemical equilibrium, and these are presented herein. They cover the

range up to nearly complete dissociation but are not valid in the ioni-
zation region.

SYMBOLS
c mass concentration
Cp constant-pressure specific heat
Cp,e effective constant-pressure specific heat
Cp,f frozen constant-pressure specific heat
Dij multicomponent diffusion coefficilent
£ ; binary diffusion coefficient
E internal energy per mol
E© energy per mol at zero absolute temperature
e internal energy per mass, E/m
e® energy per mass at zero absolute temperature, E°/m

f(p,h) function defined by equations (23%a) and (42)

H local enthalpy per mol
h local enthalpy per mass, H/m
hg reference enthalpy,

250RTper = 2.119 x 108 £t2/sec? = 8,465 Btu/1b
ke frozen conductivity
ke effective conductivity

kp reaction conductivity
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m molecular weight, mass per mol

NPr,f frozen Prandtl number

Npr,e effective Prandtl number

Nie Lewis number

n molar density, mol per volume

P pressure

Pref reference pressure, 1 atmosphere = 2,117 Ib/sq ft abs
?f heat-flux vector

R gas constant per mass, Ry/m

Ry universal gas constant per mol

T temperature

Tref reference temperature, 273.16° K = 491.69° R

VE average diffusion velocity of ith species

X mol fraction

2 compressibility, p/pﬁT

vl viscosity

Hpef reference viscosity, 3.584 x lO"7 slugs/ft-sec

P density, mass/volume

Pref reference density, 2.498 x 1075 slugs/cu ft
Subscripts:

1,2 evaluated at conditions Pl’hl and pz,hg, respectively
A atoms

E evaluated at reference enthalpy hp and arbitrary pressure



i,J property of ith and jth species, respectively
M molecules

N nitrogen atoms

No nitrogen molecules

0 oxygen atoms

0o oxygen molecules

Barred quantities are for undissociated air.
CORRELATION FORMULAS AND TABLES

In the correlations which follow, low-temperature thermodynamic
and transport property data for air are taken from the NACA-NBS tables.
(See ref. 1.) High-temperature thermodynamic properties are tnose of
references 3 and 4, both of these being derived from the tables in ref-
erence 2.% High-temperature transport properties are those of refer-
ence 5.

The correlations have been determined for the range

0.0152 < ﬁﬁ-g 2.0

=

=
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except where otherwise noted. The lower enthalpy limit corresponds to
temperature of 540° R; the upper limit corresponds to the total enthalpy
of the fluid encountered by a vehicle traveling in the atmosphere at a
velocity of about 23,000 feet per second, a velocity somewhat larger
than circular satellite velocity at the earth's surface. The pressure
range should encompass those pressures encountered for all reasonable
combinations of flight velocity and altitude up to an altitude of about

250,000 feet.

¥References 3 and 4 use slightly different compositions and thus
slightly different molecular weights for undissociated air. The differ-
ence is less than one-half of 1 percent and, in the light of the accuracy
of the correlation formulas and tables found herein, is neglected. The
present paper uses the constants for argon-free air of reference 3.

O = H
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One other comment is appropriate at this point. The composition
data of reference 4 indicate that, for all but the highest density
levels, dissociation of oxygen is essentially complete before dissocia-
tion of nitrogen begins, and that the latter process is essentially com-
plete before ionization of oxygen and nitrogen atoms begins. Thus, as
discussed in reference 5, the value of the compressibility factor 2
indicates approximately the reaction occurring at any given condition.
For undissociated air composed of nitrogen and oxygen molecules in the
ratio 4:1 by volume, the regions are 1 < Z < 1.2 for oxygen dissocia-
tion, 1.2 < 2 < 2.0 for range of nitrogen dissociation, and 2.0 < Z
for the ionization of oxygen and nitrogen atoms. For the maximum enthalpy
considered herein, h/hg = 2.0, the values of Z for the six pressure

levels were obtained from reference 4 and are tabulated below:

P/Pref Value of 2 for h/hg = 2.0
1074 2.015

1073 2.003

10-2 1.980

10-1 1.954

100 1.912

10 1.857

These values indicate that, for all practical purposes, the present cor-
relations remain within the range of nitrogen dissociation.

Density

Dimensionless plots of density ratio against enthalpy ratio at con-
stant pressure for various pressure levels are shown in figure 1. The
solid curve on the figure represents the function

0.6123%

P
E h
O 1 - (2 1
5 1 - 1.0477 (hE) (1)

The numerical coefficients in equation (1) were computed from the data
at enthalpy ratios less than 1.6 by the method of least squares, and the

function fits the data reasonably well over the range 0.0152 5 ﬁ% § 2.0

for all pressures shown. The maximum deviation in this range is about
+25 percent at low enthalpy and the average deviation for all data is

about 6 percent. Agreement is best in the range 0.2 < ﬁ% <1.6.



The pressure dependence is established in figure 2 (density plotted
against pressure at the reference enthalpy hg). The solid line is the
function

0.96
E . 0.029u< P ) 7% (2)
Pref Pref

computed by the method of least squares, and the difference between this
function and the data points is negligible (less than one-half-percent
deviation).

Equations (1) and (2) may be used to establish the arbitrary ratio
pl/p2 from the following identity:

%)
Py (02 D=Do (pE>p=pl

Viscosity

The viscosity usually appears in boundary-layer work in the product
of density and viscosity pu. A series of relations for pu as a func-
tion of p and h based on the data of reference 5 was given in refer-
ence 11. These different functions were used to fit different portions
of the curves. A single function is derived in the present paper and is
shown subsequently.

Plots of the ratio pEuE/pu against h/hE at constant pressure in
the range 10~k < -2 _ <10 are shown in figure 3. The function

Prer
0.3329
PEE _ ) 1021301 - (ll) (&)
PH hg
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is plotted as the solid curve and was computed as a least-squares fit to
the data for enthalpy ratios less than 1.6. Agreement between data and
equation (4) is much better than was the case for density. Maximum devia-
tion is about 18 percent and the average deviation in the entire range

0.0152 < -1-‘1}_125_: < 2.0 is about t3 percent.

PEE

The pressure dependence is shown in figure 4, where ———_ s
Preftref
rlotted against p/pref. The data and the curve, the latter a least-

squares it to the data and given by the function

_PBE | o.opsf R 0-9%2 (5)
PrefHrerf Prer

agree within about one-half percent.

Equations (4) and (5) determine the arbitrary ratio P1My /Pty  8s
follows:

o]
’—l
-
'_J
TR
=
=3

2“2>p=p2 (PEYE) pp,

Polip (pE“E> (PErE) oy 5
P1M1 b=p3

<h2>o.55297
1 -1.021311 - |—

0.992
- o8 Jfer\>™ (6)
hl)o.3329 P,

1 -1.0223|11 -|{—

Heat-Transfer Parameters

The transport properties pertinent to the transfer of heat in a
reacting gas mixture are the thermal conductivity and the diffusion
coefficients. Correlations of these coefficients may be obtained in
the same manner as was used for density and the density-viscosity prod-
uct, but care must be taken in the definitions of the coefficients.

The heat transfer can be treated in two ways; in the first, conduction



of heat by collisions of the atoms and molecules is kept separate from the
heat transfer caused by the diffusion of the reacting gas species, and in
the second (valid only for gas in chemical equilibrium), the two types of
heat transfer are combined as an "effective conductivity." Both approaches
and results are described in the following paragraphs.

Separate conduction and diffusion.- The heat-flux vector for a
reacting mixture of perfect gases (neglecting pressure and thermal dif-
fusion) is

-
?q') = -kp grad T + E niHiV:L (7)
i
where
2
- n . . .
V} = B;E E%: m;Djj grad X; (8)

In equations (7) and (8), Xk, 1is the conductivity of the mixture due only

to the collisions (the "frozen" conductivity), n; and H; are the molar

density and specific enthalpy of the ith specles, respectively, V; is

the average diffusion velocity of the 1th species relative to the mass
averaged velocity of the mixture, Dij is the multicomponent diffusion

coefficient, and xj 1s the molar concentration of species j, nj/n.

The aforementioned relations are derived and discussed thoroughly in
reference 12 (chs. 7, 8, and 11).

In general, the multicomponent diffusion coefficients are extremely
difficult to express, and thus the energy flux by diffusion is difficult
to evaluate. However, in the case of a binary mixture, these coefficients
become the binary diffusion coefficients QDEJ ==£%i) and the diffusion
terms may then be evaluated. This approach is useful, therefore, in the
case of dissociating air, which may be considered a binary mixture of
"air atoms" and "air molecules" because of the similar molecular weights,
thermodynamic properties and collision cross sections of oxygen and nitro-
gen. Such an approach was used in references 8 and 10. A parallel
approach would not be useful for the ionization region, since at least
three species, atoms, ions, and electrons exist.

For a binary mixture, then, the diffusional velocity is, from
equation (8)

Ul & o
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.\_f’. =.n—2-EJ.& rad X. (9)
1 P N4 1J g J
and the heat-flux vector is, from equations (9) and (7), by using the
subscripts A and M for the two species, atoms and molecules,
2
a’ = kg grad T + np—ﬁAM(HAmM grad xy + Hvymp grad xA) (10)
It is convenient to convert to a mass basis, in which
n - Hi  Enthalpy/Mol _ Enthalpy (11)
oy Mass/Mol Mass
The mass concentration c¢; 1is
cs = ﬁ = E’l_n:L =X .IEL (12)
i p mn im

where m 1s the mean molecular weight of the mixture given by either o
the formulas

m = z: Xqmyq (13a)
i
1-5" (13b)

Also, from the definitions of the concentrations,
2_®=)_cp=1 (14)
i i
Equations (12) and (13%) may be differentiated to yield

grad c; = ;% grad x; - 7%-};: m; grad x4 (15)
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In the case of a binary mixture, from equations (13), (14), and (15),

mpThy
2

grad cp = -grad ¢y = grad xp =

S U grad x (16)
5 M

m

When equations (11) and (16) are substituted into equation (10), the
heat-flux vector becomes

T = -kp grad T - DQAM(hA - hM)grad cp (17)

The equations are now specialized for a constant-pressure process.
This procedure is appropriate for the boundary layer because the only
important components in the gradient are the partial derivatives in the
direction normal to the surface, for which the pressure is constant. For
a mixture in chemical equilibrium, since the mass concentrations are func-
tions only of the state of the mixture

¢y = cy(p,h) (18a)

dc - dcs
grad c; = i grad h + i grad p (18b)
1 oh P dp h

Then the heat-flux vector is (for constant pressure)
g =kegrad T + %(h - I é-C—A grad h (19)
f A M Sn o

Because the enthalpy is the natural dependent variable for the equilibrium
energy equation, the conduction term i1s rewritten in terms of enthalpy.
From the definition for a mixture of perfect gases,

h= D  esh;
1

(20a)

Ul = O
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and

dhyi
ad h = cy —= d T+ h; grad ¢ 20b
gr g 1 aT gra Zi i g i ( )
and by using equation (18b) and the assumption of constant pressure
an dT+)_ h (aci> dn (21)
gra = ¢y, f gra + 1 gra
D, T oh D
where the "frozen" specific heat is
Cp,f = z; cicpi

and

Equation (21) is specialized for a binary mixture and solved for grad T.
When the result is substituted into equation (19), there is obtained

§=—t grad h[l + f(p,h)] (22)
N
Pr,f
where
hy - hy\[dC,
£(p,0) = (Ve - 1)( . ) 5 (238)
Bg/,

ucp f
Npr,r = kf’ (23c)
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The three functions, f(p,h) (called herein the diffusion function),
Nie (Lewis number), and Npr, £ (frozen Prandtl number), are purely prop-
erties of the equilibrium mixture and approximate data for the latter two
are avallable for the dissociating region in reference 5. These are the
"partial" coefficients in that reference. Correlations of these functions
have been determined for equilibrium mixtures.

In figure 5 the "frozen" Prandtl number from reference 5 is plotted
against enthalpy ratio for six pressure levels. The low-temperature data
are that of reference 1. No simple analytic function was found to fit
these data but, since the data approximately defined a unique curve for
all pressures, a correlating table of Prandtl number was fitted. This
function is given in table I and plotted in figure 5. The deviations in
Npr,r are less than 12 percent. The deviations in the function 1 - Npr,r,
which appears in certain forms of the boundary-layer energy equation, are
less than *5 percent. Thus, the function in table I is valid to these

tolerances for the range 0.005 s SR s 2.0, J_O"lL s £ < 10.
hg Pref

The diffusion function f(p,h) must be evaluated from the thermo-
dynamic properties of the mixture as well as the Lewis number. The term

(éEA) is evaluated as follows:
oh D

For air, the equation of state is

P = ZpRT = pRT (2k4)
= By | . . Ry .
where R = — 1is the gas constant for undissociated air and R = - 1is
m
the gas constant for the dissociating mixture. Then
m
Z = = 2
- (25)

The molecular weight of a mixture of gases is given by equation (13).
Thus, for undissociated air

0, By, %o, Cmp
2 4 2 = 2 26
mo, | m, 32 @ 20 (26)

U e
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From equations (13) and (25) for dissociating air,

- ITI(EA + C_M)
My Ty

N3
!

e e
|22+ &) (&_Na) (27)
N/ Atoms 02 N2 Aplecules
The mass concentrations of the four constituents may be found as
functions of Z from equation (27) and an assumed composition of undis-
sociated air. The undissociated air is assumed to be a mixture of oxygen

and nitrogen molecules in the molar ratio of 1l:4, which corresponds to a
mass ratio of 0.222:0.778 (602 = 0.222, 5N2 = 0.778). Then, regardless

of the degree of dissociation,

0.222 (28a)

0.778 (28b)

CN + CN2

Equations (27), (28), and (14) may be combined to yield the concentrations
as functions of Z as follows:

For oxygen dissociation 1.0 <z<g1.2:

mo
cp =¢Co = —Eg(z - l)-w
CN =0
c = 0.222 - ¢
(29a)

CN2 = 0. 778
dcp _ Moo, dz,
b @ i

hp hp
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For nitrogen dissociation 1.2 £ Z £ 2.0:

ey = —==(2 - 1.2) A

co = 0.222
cp = CO + CN

CO2 = 0 g (29b)

CN2 0-778 - Ccy

oy  my, dz

3h m yh
b h
E E

Equations (29) depend upon the assumption, mentioned earlier, that dis-
sociation of oxygen is complete before dissociation of nitrogen begins,
and that the latter process is complete before ionization begins.

hp -
The term —A—E—EM in equation (23a) is an average enthalpy differ-
B

ence between the "air atoms" and "air molecules" and may be evaluated

from the properties of oxygen and nitrogen atoms and molecules listed in
reference 5. For the mixture

h = hACA + hMCM (30)

hpep = hpeg + hyey
(31)

hyem = h02002 + hNecNg
From equations (30) and (31)

h h hy hy
0 N 2 D
co—+cN— cO ——+CN——
hy - hy hy hy 2 hy 2 hg (32)
hE CA CM

U+ o
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The enthalpies of the constituents, hg, hy, hOg: and hN2 may

be evaluated from the tabulated internal energies in reference 5 and
the relations

o] o] o o)
h e ej - ej e E; - E
e S SN I S T S ES R
RyT R4T R4T R;T R,T uT
(1: 0, N, Op, N2> (33)
E.° e.0
The term —%- = —1_ is a constant representing the internal energy of
RyT R4T
the gas at zero absolute temperature. It is herein taken as zero for the
é molecules and for the atoms is one-half the energy of dissociation per

mol of the diatomic molecules. The dimensionless dissociation energies
are, from reference 5

eo® _ Eo° _ 29,500° K
T

RoT R,T
en® _ Ey° _ 56,600° K
RyT RyT T
and,
eO2° _ EOgO _ eNgo _ ENQO _
R02T RyT RNQT R,T
Ey - Eio ej - eio
The internal energy relative to this constant 5 =
uT R4T

is a function only of temperature and is given in table II(b) of
reference 5.

Equation (33) may be rewritten, by using the definition hg = 250§T,
as

hs e_O - e; - e'o
B i_& , @ T <1+LR_T_1_> (i:O, N, Oo, Ng) (3L)
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where
my = 16
my = 1k
mo, = 32
my, = 28

and for the assumed composition, from equation (26),

m = 28.8

The actual molecular weight of undissociated argon-free eir is 28.86
(ref. 3), which compares very favorably with the assumed value shown
above. The more correct value should be used in computing the gas con-

= R
stant R = —%. The value 28.8 is used only in evaluating equations (29)

and (34).

Values for the function f(p,h) (eq. (23a)) were computed for the
six pressure levels and the enthalpy range O s é% < 2.0, by using equa-

tions (29), (3%2), (34), and the data of reference 5 for Lewis number and
oZ

5y b
. hg

were obtained from curves of Z against h/hp plotted from the data of

the enthalpies of the constituents. The values of in equations (29)

references 3 and 4. Note that below the level of oxygen dissociation

where h/hE is less than about 0.10, Z =1, dnd thus oz f(p,h) = 0.

3 b
hy

The results are shown in figure 6.

The spread with pressure level is moderately large and, strictly
speaking, a correlating function should be a function of both enthalpy
and pressure. However, it is felt that a function of enthalpy alone,
representing the mean of the pressure spread, would be sufficiently
accurate for boundary-layer purposes. (See Discussion.) Such a single
function 1s given in table I and is shown in figure 6. The correlating

function is assumed to be zero for fl § 0.15, this value representing an

E
average threshold of dissociation.
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Although the viscosity, frozen Prandtl number, and diffusion func-
tion are sufficient to determine the coefficient of heat flow, the Lewis
number itself is of interest.

The Lewis number data of reference 5 are shown in figure 7. No low
enthalpy data are available but, since the Lewis number describes the
diffusion processes, it has no application for equilibrium air at enthal-

pies below those required for dissociation. Dissociation is negligible

below ﬁ% = 0.1 at the lowest pressure used herein; thus, lack of Lewis

number data in this region is unimportant.

Figure 7 indicates that the Lewis number correlates roughly inde-
pendent of pressure. A fitted set of data is given in table I and is
shown as the solid curve in figure 7. The correlation function for Nye

is valid in the limits 0.10 £ B < 2.0, 10-% £ _2_ <10 within about
hg Bref
110 percent.

Although the correlations presented in this section are valid only
for an equilibrium mixture, the general approach, ordinary conduction and
diffusion effects being kept separate with a binary mixture, is also use-
ful for nonequilibrium flows. In this more general case, equation (17)
is appropriate, but the concentrations are functions of the reaction rates
and the flow through the species continuity equations, and the coeffi-
cients are functions of concentrations as well as pressure and tempera-
ture. Few data are available for nonequilibrium processes, and they are
not considered in the present report.

Lumping conduction and diffusion together.- The second method for
evaluating the heat flux in a reacting mixture is closely related to the
method just described. (They would be equivalent for a true binary mix-
ture of reacting gases in equilibrium.) In this second method, the dif-
fusion function is computed from the multicomponent diffusion coefficients,
the specific reactions taking place being considered. The heat-transfer
coefficient resulting from these diffusion processes is then considered
a 'reaction conductivity" and is added to the frozen conductivity. The
method is restricted immediately to chemical equilibrium, but not to a
binary mixture. The method 1s outlined and the results shown in the
following.

For a multicomponent mixture of reacting gases, the heat flux is
given by equations (7) and (8). If the gas is in chemical equilibrium,
the molar concentrations are functions only of the state of the mixture,
or

Xy = Xi(p,T) (553')
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ox x4
grad x; = <——l> grad T + (———) grad p (35b)
+ T /p 3p /o

The heat-flux vector is then, for a constant-pressure process,

-q = (kf + kr>grad T (36)

where the '"reaction conductivity” k, 1is defined
k= - 550 Hy|) mpbiy(ge (57)
1 3 P

The quantity ke = ke + k. is considered an effective conductivity and
includes ordinary conduction by collisions ky and heat transfer by
diffusion of reacting species Xky.

The mixture enthalpy is given by equation (20a) and is a property
of the state of the mixture. Then,

_ ah> (8h>
d h = da T d
gra (gf b gra + % T graa p

and for a constant-pressure process

grad h = ¢, o grad T (38)

where

_ () _ oci
Cp’e = (E—T->p = Cp,f + ; hi(aT >p (39)

When the heat-flux vector is written in terms of the enthalpy
gradient by using equation (38), there results

ke
3 -

grad h = grad h (k0)

p,e Ner,e

U & O\
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where the effective Prandtl number is defined as

HCph e
Npr,e = = (41)

The details of evaluating the reaction conductivity were shown in
reference 13 where this method was first successfully applied. Hansen,
in reference 5, applied the equations of reference 13 to the calculation
of the effective Prandtl number in equilibrium air (the effective Prandtl
number is Hansen's "Prandtl number"). His results are shown in figure 8
plotted against enthalpy ratio for the six pressure levels. There is
some spread with pressure and it is caused mainly by the shift of the
maxima and minima to slightly higher enthalpies at the higher pressures.
Nevertheless, an approximate correlating function independent of pressure
has been fitted to the data and is shown in figure 8 and in table II.
Low-temperature data are not shown; at temperatures below the dissociation
level (h/hg 1is less than about 0.10), the frozen and effective Prandtl

numbers are equal, and the data of reference 1 (correlated in table I)
are appropriate.

Comparison of the two methods.- The two methods for expressing the
transport coefficients of heat flux should, in principle, give identical
results. They may be compared by equating equations (22) and (40), which
gives another relation for computing the diffusion function

Npr, £

-1 (42)
NPr,e

f(p,h) =

The diffusion function given in equation (42) was computed from the data
of reference 5 and the results are shown plotted against enthalpy ratio
in figure 9. Again, the pressure spread is primarily caused by a shift
in the two maxima and the minimum with pressure level. However, a single
function has been fitted to the data and is shown as the solid curve on

the figure. This function is listed in table II. In this case the cor-
relating function has been set equal to zero for ﬁ% s 0.13. For com-
parison, the correlating function which resulted from the data calculated
from equation (23a) (the function of table I) is shown in figure 9 also,
as the dashed curve. It is apparent that significant differences occur

in the approximate range

h
0.3 < 'TE< 1.2

The possible reasons for the differences in the two functions will
be considered in the next section.
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DISCUSSION

The correlation formulas for density, and the density-viscosity
product (egs. (1) and (4), respectively) and the correlation tables for

Prandtl number, Lewis number, and the diffusion function (tables I and II) .

give approximate variation of these quantities with enthalpy at constant

pressure, independent of pressure level in the range lO"LL S EEL— s 10.
ref

In this form, these functions are particularly useful in integrating the

boundary-layer equations because of the condition that the pressure is

constant across the boundary layer. These correlations then represent

the distribution of the regpective functions across the boundary layer.

From the boundary-layer point of view, the most important of these
functions is the product opu, and figure 3 indicates that equation (%)
represents the data very well. The question arises as to the accuracy
of the viscosity data of reference 5, from which the present correlation
has been derived. No direct experimental confirmation of the viscosity
coefficient predictions of reference 5 exists. Some indirect experimental
confirmation is apparent in the comparison of theoretical and experimental
aerodynamic heat-transfer rates in reference 1L, where the theory mekes
use of Hansen's viscosity coefficients. However, scatter in the data and
the possibility of compensating errors in the viscosity coefficients or
in the heat-transfer theory serve to deny complete confirmation of the
calculated viscosities.

The transport properties computed in references 6 and 7 differ quan-
titatively somewhat from those of Hansen, the differences resulting from
the differing assumptions made for the intermolecular potentials. Reso-
lution of these differences must await more detalled description of the
interaction potentials or direct experimental determination of the coef-
ficients. In the present paper, reference 5 was used for transport prop-
erties because it gave data typical of the variety available, and because
it covered the widest range in pressure and temperature.

The density correlation formula (eq. (3)) is not sufficiently accu-
rate for the calculation of absolute density, but its value lies in
obtaining solutions of the complete boundary-layer equations. The density
ratio enters the boundary-layer equations explicitly only in the axial
pressure gradient term in the momentum equation, and for high-temperature
flows with cool walls, this term is not too important (ref. 15).

The frozen Prandtl number correlation fits the data very well, but
this is not true of the diffusion function f£(p,h) or the effective
Prandtl number which includes the effects of diffusion. Nevertheless, the
pressure-independent correlating functions should be useful for integrating
the boundary-layer equations.

T o
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As was pointed out previously, the two approaches for computing the
heat-flux coefficients for an equilibrium mixture of reacting gases led
to the somewhat different results (see fig. 9). 1In principle, Hansen's
calculations are somewhat more sophisticated in that his reaction effects
are computed with mixtures of three constituents: oxygen atoms and mole-
cules and nitrogen molecules In the oxygen dissociation region, and oxygen
atoms and nitrogen atoms and molecules in the nitrogen dissociation region.
In this way it 1s possible to consider that all atoms diffuse through all
molecules but that the reactions involve only certain atoms and molecules.
In the first method given herein, where a binary mixture of "air atoms"
and "air molecules" was assumed, it is impossible to meske this distinction.
However, the manner in which these assumptions enter the resulting 4if-
fusion coefficients is not clear.

However, one of the assumptions used in both the present binary
approach and in that of reference 5 appears to contribute to the discrep-
ancy, that is, the assumption that oxygen and nitrogen dissociation
regions do not overlap. This assumption does not have much effect upon
the thermodynamic propertles, and there is also probably little effect
‘upon the viscosity and frozen conductivity, but a larger effect may be
imposed upon the reaction conductivity and effective Prandtl number,
which comes about as follows:

The assumption of separate oxygen and nitrogen regions leads to the

requirement that (g% > and hence (é&) , be zero at the transition
p

oh,
P
between the two regions (at Z = 1.2 for the assumed composition). How-
ever, the more correct thermodynamic data of references 2 to 4 show no
such behavior. The slight overlap of dissociation regions therein keeps

VA

5 finite. Now the diffusion function, when separate conduction and

P
de
diffusion are considered, is proportional to (Eﬁé (see eq. (23a)),
P
dZ

which is in turn proportional to <EE> under the present assumptions.
P

The data computed from equation (23a) and plotted in figure 6 used values
of this derivative obtained from the data of references 2 to 4 and thus

the point at which Z = 1.2 was not given by f(p,h) necessarily equal
to zero. Had the thermodynamic data of reference 5 been used in conjunc-

tion with equation (23a) instead, where the condition of zero (é& at

oh
Z = 1.2 was enforced, the function f(p,h) would have necessarily been
zero at this point. Such a calculation was carried out at one pressure
level, P/Pref = lO‘u, and the resgults are shown in figure 10. The solid

curve represents equations (23a) using the thermodynamic property data of
references 2 and 4. (This is the data of fig. 6 at this pressure.) The
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dashed curve represents the data from equation (42) using the Prandtl
number data of reference 5. (This is the data of fig. 9 at this pres-
sure.) The third curve represents equation (23a) with the modification

that Hansen's thermodynamic data (ref. 5) was used to compute (g% ,
Y

with the condition that

at

I~ 0.37 with f(p,h)
hy
equal to zero. Under these conditions, the results of equation (23a)
begin to take on the general appearance of the data from equation (k2),
the dashed curve, but with a much smaller second maximum.

This condition imposes a minimum on the curve st

On the other hand, Hansen has pointed out to the author in a private
communication that the Butler and Brokaw formulas for thermal conductivity
give maxima in ke at slightly lower enthalpies than the maxima in Cp,e

for each reaction. Since equation (42) may be expressed as

ke/kf
f(p,h) = ————— -1
cp,e/Cp,f

then the function of equation (L42) should show a pronounced maximum fol-
lowed by a distinet minimum for each reaction, a trend shown clearly in
the data and correlating curve on figure 9 (from eq. (42)). If these
trends are real, the assumption in the first method that the gas is a
binary mixture of atoms and molecules may suppress the first minimum and
second maximum, giving instead a flattened out curve in this region,
exactly the behavior as shown in figure 6.

Real air should behave most nearly like a binary atom-molecule mix-
ture where oxygen dissociation begins and where nitrogen dissociation
nears completion. It 1s gratifying that the two methods do agree in
these regions.

Fortunately, the question of choosing between the two diffusion
functions for equilibrium flows is actually somewhat academic. Aside
from the fact that many flow situations will not be in chemical equi-
librium, even in the equilibrium cases, the diffusion effect is not
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large in the dissociation region, and the differences resulting from
using the different methods should be negligible. For example, for
stagnation flow with fully dissociated air outside the boundary layer

at a pressure of lO‘u atmospheres and a constant Lewis number of 1.l,
reference 10 predicts that the diffusion effect is to increase the heat
transfer by a factor of about 15 percent over that for a Lewls number

of unity (£(p,h) = 0). A correlation function for data computed from
equation (23a) but using a constant Lewis number of 1.4 is shown in fig-
ure 6 and may be compared both to the function in figure 6 obtained by
using the variable Lewis number of reference 5 and to the function in
figure 9. Whereas, the Npe = 1.4 curve always has f(p,h) 2 O, that
is, it tends to increase the heat transfer toward the wall, the variable
Lewis number curve and that of figure 9 are positive at low enthalpies
and negative at higher enthalpies; this condition leads to the belief
that in a boundary layer with high enthalpy at the outer edge and low
enthalpy at the wall, the effect of diffusion will be self-compensating.
One would then expect a total diffusion effect much smaller than that
predicted by Fay and Riddell (ref. 10) with a negligible dependence upon
which of the two diffusion functions was used. Quantitative comparisons
and a more definite conclusion must await solutions of the boundary-layer
equations using the pertinent real-gas properties.

CONCLUDING REMARKS

Correlation formulas and tables for density, the density-viscosity
product, Prandtl number, Lewis number, and a diffusion function as func-
tions of enthalpy and pressure have been developed from the available
thermodynamic and transport property tables. Presented in this manner,
the functions lend themselves to calculations of the equilibrium boundary
layer in real-gas flow. The correlations cover a range in pressure from

10-4 atmospheres to 10 atmospheres, and in enthalpy from 128.7 Btu-1lb
(corresponding approximately to a temperature of 540° R) to 16,930 Btu/1lb
(corresponding roughly to complete dissociation of nitrogen molecules, or
to the total enthalpy of the air encountered by a vehicle in flight in
the sensible atmosphere at a velocity of about 29,000 ft/sec).

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., October 8, 1959.
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TABLE I.- CORRELATION TABLES FOR FROZEN PRANDTL NUMBER, LEWIS NUMBER,

AND THE DIFFUSION FUNCTION OF EQUATION (23a)

Low temperature High temperature
h/hg Npr,t h/hg Npr, £ Nie £(p,h)
0.005 0.770 0.10 0.768 1.355 *0
.010 . 739 .20 771 1.%63 .190
.015 .708 .30 .55 1.268 AT71
.020 .689 .40 LTh2 1.196 .087
.026 .680 .50 .731 1.154 .056
.031 .680 .60 .721 1.102 .039
.036 684 .70 712 1.045 .016
.0k2 .689 .80 .TOk4 .986 -.016
.0L48 696 .90 .698 .931 -.052
.053 .702 1.00 .693 .880 -.089
1.10 .689 .832 -.124
1.20 .686 .789 -.159
1.30 .684 .750 -.191
1.40 .683 STk -.219
1.50 684 684 -.2kh
1.60 .686 .660 -.265
1.70 .690 637 -.267
1.80 .695 .619 -.259
1.90 .700 604 -.235
2.00 707 .590 -.204

* h .
For e < 0.15, f(p,h) = O.

U&= oN
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TABLE II.- CORRELATION TABLES FOR EFFECTIVE PRANDTL NUMBER AND THE

DIFFUSION FUNCTION OF EQUATION (L42)

h/hg f(p,h) Npr,e
0.10 *0 0.740
.20 .231 .619
.30 112 .688
.o -.006 .758
.50 .210 615
.60 .230 .593
.70 .198 .59%
.80 .139 .608
.90 .075 635
1.0 .016 670
1.1 -.0%0 .711
1.2 -.092 . 759
1.3 -.139 .806
1.4 -.181 .850
1.5 -.218 .888
1.6 -.250 .922
1.7 -.270 .949
1.8 -.279 .958
1.9 -.268 94T
2.0 -.235 .90L

*For E?-é 0.13,

f(p,h) = O.
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